Monadic Second-Order Logic for Graphs: Algorithmic and Language Theoretical Applications
نویسنده
چکیده
This tutorial will present an overview of the use of Monadic Second-Order Logic to describe sets of finite graphs and graph transformations, in relation with the notions of tree-width and clique-width. It will review applications to the construction of algorithms, to Graph Theory and to the extension to graphs of Formal Language Theory concepts. We first explain the role of Logic. A graph, either finite or infinite, can be considered as a logical structure whose domain (the ground set of the logical structure) consists of the set of vertices ; a binary relation on this set represents adjacency. Graph properties can be expressed by logical formulas of different languages and classified accordingly. First-order formulas are rather weak in this respect because they can only express local properties, like having degree or diameter at most k for fixed k. Most properties of interest in Graph Theory can be expressed in second-order logic (this language allows quantifications on relations of arbitrary but fixed arity), but unfortunately, little can be obtained from such expressions. Monadic second-order formulas are second-order formulas that only use quantifications on unary relations, i.e., on sets. They can express many basic and useful graph properties like connectivity, k-colorability, planarity and minor inclusion, just to take a few examples. These properties are said to bemonadic secondorder expressible and the corresponding sets of graphs are monadic second-order definable. Many algorithmic properties follow from such logical descriptions. In particular, every monadic second-order definable set of finite graphs of bounded tree-width has a linear time recognition algorithm ([1], [2], [4], [5], [6]). Monadic second-order formulas are also used in Formal Language Theory to describe languages, i.e., sets of words or terms. A fundamental result in this field is that monadic second-order formulas and finite automata have the same expressive power. It is fundamental for the theory and practice of model-checking, Supported by the GRAAL project of "Agence Nationale pour la Recherche".
منابع مشابه
Graph Structure and Monadic Second-Order Logic: Language Theoretical Aspects
Graph structure is a flexible concept covering many different types of graph properties. Hierarchical decompositions yielding the notions of tree-width and clique-width, expressed by terms written with appropriate graph operations and associated with Monadic Second-order Logic are important tools for the construction of Fixed-Parameter Tractable algorithms and also for the extension of methods ...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملThe Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures
Courcelle, B., The monadic second-order logic of graphs VII: Graphs as relational structures, Theoretical Computer Science 101 (1992) 3-33. Relational structures form a unique framework in which various types of graphs and hypergraphs can be formalized and studied. We define operations on structures that are compatible with monadic second-order logic, and that are powerful enough to represent c...
متن کاملThe Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability
Courcelle, B., The monadic second-order logic of graphs V: on closing the gap between definability and recognizability, Theoretical Computer Science 80 (1991) 153-202. Context-free graph-grammars are considered such that, in every generated graph (3, a derivation tree of G can be constructed by means of monadic second-order formulas that specify its nodes, its labels, the successors of a node e...
متن کاملMonadic Second-Order Definable Graph Transductions: A Survey
Courcelle, B., Monadic second-order definable graph transductions: a survey, Theoretical Computer Science 126 (1994) 53-75. Formulas of monadic second-order logic can be used to specify graph transductions, i.e., multivalued functions from graphs to graphs. We obtain in this way classes of graph transductions, called monadic second-order definable graph transductions (or, more simply, d&able tr...
متن کامل